NOVEL LOCAL ABLATIVE THERAPY FOR HEPATIC AND PANCREATIC MALIGNANCIES

Professor Edward Leen, Consultant Interventional Oncology, Interventional Ablative Therapy Service Imperial College Healthcare, The Princess Grace Hospital, London

TYPES OF ABLATIVE TECHNIQUES

Thermal

- Microwave Ablation (MWA)
- RFA: Radiofrequency Ablation
- Cryo-Ablation
- HIFU: High Intensity Focused Ultrasound

Non-Thermal

- Chemical Ablation
- Irreversible Electroporation (IRE)
- Approach: Intra-operatively, Laparoscopically, Percutaneously
 - Percutaneous Approach: General anaesthetic or heavy sedation & Analgesia
- Guidance: US/CEUS, CT or MR

RFA

AWM

IRE

IRE

- Rapid series of short, electrical pulses.
- High voltage but low energy (non-thermal).
- Nano-sized defects ("pores") created in cell membrane.
- Cell death occurs (mimics natural cell death).

IRE: CELLULAR VS NON-CELLULAR TISSUE

- All cells in electroporation zone are irreversibly "porated"
- Collagenous structures are not affected
- Intact adventitia & lamina visible at 2 days with no smooth muscle cells present
- Endothelium largely repopulates at 2 days
- Smooth muscle repopulated at 2 weeks

IRE - Procedure

- General Anaesthetic
- Paralysed & ventilated
- ECG Synchronisation
- CT/US Guided Targeting
- 2 Needles at 2cm -2.5cm active
- 90 x 2 pulses delivery
- Ethanol Block

CT SCAN ROOM FOR IRE

INDICATIONS FOR ABLATION

Metastases - CRC

- Adjunct to liver resection
- Those unsuitable for resection: < 3 4 cms</p>
 - inadequate surgical margins or liver reserve or co-existing morbidity
- Unsuitable for further chemotherapy: Cardio-toxicity, Neuropathy etc
- Neuro-endocrine Metastases slow growing tumours
- Breast, Melanoma or Renal Metastases: Oligometastases

Hepatocellular Carcinoma (HCC)

- Patients with limited HCCs not suitable for transplant/ resection: 30-40%
- BCLC Stage A 1-4
- Patients awaiting Liver Transplant or Liver Resection: Single <5 cm or x3 < 3cm (Milan criteria)
- Large HCCs: BCLC Stage B1 and B2 Combination techniques TACE/SIRT + MWA/RFA

IMAGING TASKS FOR ABLATION

- Staging:
 - Detection of "Occult" lesions
 - Characterisation
- Targeting
 - Occult lesions
 - Large lesions: multiple needle placements
- Peri-procedural monitor
 - Assessment of complete ablation
 - Assessment for potential complications
- Follow-up
 - Local Recurrence / New lesions

PROTOCOL FOR CONTRAST ENHANCED ULTRASOUND

- US Scanner
 - Non-Linear Imaging/Contrast mode
 - Low MI
 - Focal zone low down the screen
 - Adjust gain
 - Dual display with fundamental and contrast mode
- Small IV bolus 1.0 mL of SonoVue
- Systematic Sweeps over all phases
- Malignant lesions wash-out in portal and/or late phases
- Repeat 1.0 mL bolus injection if necessary

OCCULT METASTASES & EXTENT OF DISEASE

Baseline

CEUS: Occult lesions clearly visualised

CHARACTERISATION: MET VS ABLATION ZONE

DELINEATION

CEUS: Arterial Phase

Venous/ Late Phase

To determine appropriate ablation modality and ablation needle number/size

TARGETING RESIDUAL TUMOUR

Post TACE, Pre RFA Targeting

Post TACE, Post RFA

- Meta-analysis: TACE-RFA improves overall survival- better prognosis for patients with intermediate- and large-size HCC. (Ni et al, 2013)
- TACE+RFA: most effective strategy for early-stage HCC. (Lan et al, 2016)
- Indicated for BCLC-B (1 and 2) HCC (Hirooka et al, 2018)

MWA: Pre, Targeting, Ablation & Post

Post CEUS

RFA: PRE, TARGETING, ABLATING & POST

Pre CEUS

RFA

Post CEUS

WHY IRE IN LIVER? - SAFER

Indications

- Hilar or Subcapsular Lesions
- Bile duct, GB, GIT, & Vessels

Thompson et al, 2011 Narayanan et al, 2014 Scheffer et al 2014

Effectiveness

- Long-Term Survival: 5yr OS 49.2%
- Useful technique: outcome HCC > CLM

Mafeld et al, 2019

Schicho et al, 2019

CRC METASTASIS BY PORTAL VEIN

POST IRE ABLATION

Post IRE CEUS

Pre IRE CT: 28.4mm

Post IRE CT: 20.0mm

PRE-IRE OF METASTASIS

IRE ABLATION OF METASTASIS

POST IRE CEUS: 6 WEEKS

3D CE-US: RECURRENT METASTASIS

MONITORING OF RESPONSE:

RFA / MWA

Complete Coagulation

Volume larger Loss of enhancement Sharp margin

Residual Disease

Diameter unchanged Margin ill-defined Maintains enhancement in arterial phase and washout in portal and late phases IRE

Complete Coagulation

Smaller Volume-involution Loss of enhancement Ill-defined margin

Residual Disease

Diameter unchanged Margin ill-defined Enhancement in arterial phase and wash-out in portal and late phases

SURVEILLANCE POST ABLATION

- Colorectal Ca and HCC: CEUS at 4-6 weeks
- Colorectal Ca
 - CT scan: 3-4 months for the first year
 - CT scan 6 monthly for 2 years
 - CT yearly after
- HCC
 - MRI scan: 3-4 months

COMPLICATIONS

Sub-capsular Haematoma

Angio – Pre and Post embolisation

Active Haemorrhage

Post embolisation

LIVER METASTASES:

Resection vs Ablation

•	Resection is superior to Ablation	(Abdalla et al, 2004, Park et al, 2008)
•	RCT: MWA equally effective as Resection	(shibata et al, 2000)
•	2017 Meta-analysis from Dutch group: Data is still limited	(Meijerink et al, 2017)
•	Ablation is comparable to Resection	(Ashowo et al, 2003, Lee et al, 2008, Reuters et al 2009)
•	RFA is superior to Resection (<3cm): incremental cost-effective	ratio (ICER) of –
	£270K per QALY gained	(Loveman et al 2014)

Chemotherapy + RFA vs Chemotherapy

• EORTC-CLOCC randomised Trial: 119 CRC patients; <10 lesions & no EHD

 Chemotherapy + RFA
 Chemotherapy
 p

 OS median (m)
 45.6
 40.5
 0.01

 PFS median (m)
 16.8
 9.9
 0.025

 5-year OS (%)
 43.1
 30.3
 NS

• Limited study – RFA and RFA+PH included

(Ruers et al, 2017)

NATURAL HISTORY OF PANCREATIC CA

- Fourth leading cause of cancer-related death
- Incidence 96,000/y in EU:
 - 80,000/y deaths
- Incidence in UK: 8875/y
 - 8600/y Deaths
- Overall 5-year survival < 5%.
- 10 -15% Suitable for Resection
 - Resection Whipple: Median OS: <2 years;

33% morbidity & 5% mortality

- 30-35% Locally advanced disease
- 50-65% Disseminated disease

PANCREATIC CARCINOMA: RFA

Pre RFA CT

Pre RFA CT

PANCREATIC CA: POST RFA

MATERIALS & METHODS

111 Patients: Locally advanced Pancreatic Carcinoma N=75Liver Metastases N=363 months Chemotherapy: Pre & Post IRE

Follow-up: Clinical examination CT/MRI/PET at 2-3 months CEUS 4 weeks and 2-3 months

End-points:

Primary: Safety and Efficacy Secondary: Progression Free Survival: PFS Overall survival: OS From Day of IRE From Day of presentation

SELECTION CRITERIA:

INCLUSION

- Unresectable Pan Ca: <4cm (3.4+/-1.2) biopsy or FNA proven
- Able to tolerate any Standard First-line chemotherapy regime
 - (FOLFIRINOX- 37% Gemcitabine + Capecitabine- 33%, Gemcitabine + other- 29%)
- ECOG PS 0 or 1

EXCLUSION

- Recent Myocardial Infarction
- History of Epilepsy or Cardiac Arrhythmia
- Presence of Implanted Pacemaker
- Underlying Sepsis
- Widespread peritoneal or lung disease
- Duodenal or stomach invasion/Bleeding
- ECOG PS > 2
- Unable to give informed consent

Pancreatic Ca: US Guided IRE Bipolar Needle

Pancreatic Ca: US guided IRE Bipolar Needle

2 cm Tx Zone
 2,750 volts

Coronal

PRE IRE

IRE Needling

POST IRE

PRE IRE & POST IRE

Post IRE PET Negative at 1 year

BASELINE IRE OF PANCREATIC LIVER METASTASIS

Baseline US

Baseline CDUS

Vessels Involved

Baseline CEUS

IRE NEEDLE TARGETING OF METASTASIS

2 IRE Needles at 2cm separation in proximity to 2 main vessels

CT SCAN 9/12 POST IRE ABLATION

Significant Involution

PANCREATIC LIVER METASTASES ABLATION

PRE MWA ABLATION

POST CT-PET –VE AT 1 YEAR

IRE LOCAL RECURRENCE POST WHIPPLES

PARA-AORTIC NODAL METASTASIS

IRE Targeting 2nd Electrode

Post IRE CT

Post IRE CT-PET

PERITONEAL METASTASIS: INVOLUTION AT 4 WEEKS

Pre IRE CT

Post IRE CT

IRE OF ABDOMINAL WALL METASTASIS

RESULTS: OUTCOME OF IRE FOR LAPC

Criteria	Outcome
Overall local tumour response at 3-6 months - Partial response - Stable - Progressed	23 (31%) 50 (66%) 2 (3%)
 Over 2 Years: Recurrence Liver metastases Peritoneal metastases Laparotomy cutaneous scar metastases 	38% 25% 10% 3%
Median follow-up (months (range))	11.7 (3-45)
Survival from time of IRE (months (95%CI)): Median progression free survival Median overall survival	15 (13.7 – 16.3) 27 (21.1 – 32.8)

SURVIVAL OF ADVANCED & LOCALLY ADVANCED PANCREATIC CA

→ MPC
 <li

MPC: OS: 15m From Day of IRE OS: 19m From Diagnosis

LAPC: OS: 27m From Day of IRE OS: 31m From Diagnosis

Historical Data: From Diagnosis MPC: Gem Abraxane: Median OS: 6 m LAPC: Gemcitabine: Median OS: 7 - 11 m

CLINICAL STUDIES: IRE IN PANCREATIC CANCER

Authors	Ν	Stage/Size	Median OS (months)	Method	Complications
Veldhuisen et al, 2020	52	LAPC<4.5cm	17.2	Percutaneous	37%
Holland et al, 2019	152	LAPC < 5.5cm	30	Percutaneous	18% / 13%
Liu et al, 2019	54	LAPC (n: 28) MPC (n: 24)	LAPC: 20 MPC 14	Percutaneous	44% / 3%
Leen et al, 2018	75	LAPC < 5cm MPC (n: 36)	LAPC: 27 MPC: 15	Percutaneous	25% / 8%
Huang et al, 2018	70	LAPC < 5cm	22	Open	23% / 4%
Martin et al, 2015	200	LAPC	24.9	Open	36%
Kruger et al, 2015	50	LAPV <3cm	12	Open	46% / 20%

LAPC & MPC: IRE ALONE VS IRE + CHEMO

	Survival	IRE Alone	IRE + Chemo	
LAPC	PFS	13.9m	16.1m	<i>P</i> =0.04
	OS	16.2m	20.3m	<i>P</i> =0.04
		IRE Alone	IRE + Chemo	
MPC	PFS	9.45m	11.7m	<i>P</i> =0.04
	OS	11.6m	13.6m	<i>P</i> =0.04

LAPC: CHEMO-IRE VS CHEMO-RAD

	Chemo IRE	Chemo Rad	Ρ
PFS	7.7m	4.7m	P=0.045
OS	21.6m	10.6m	P= 0.011

HAEMATOMA POST IRE

PORTAL VENOUS THROMBOSIS POST IRE

Post IRE CDUS

Post IRE CT

Post IRE CEUS

SUMMARY: ABLATION WITH IRE

- Safe technique
- Locally effective

In combination with systemic treatment prolongs
 Overall Survival