Asthma in children – what's new?

Prof. Cas Motala FCPaeds (S.A.) FAAAAI FACAAI Division of Allergy UCT & Red Cross Children's Hospital Cape Town, South Africa

DISCLOSURES:

Advisory Boards

- Astra Zeneca
- MSD
- Novartis
- Pharmaplan
- Speakers Bureau
 - GSK
 - MSD

Editorial Board

- Current Allergy & Clinical Immunology
- Medical Chronicle
- WAO Website

Childhood asthma – new developments

- epidemiology
- diagnosis
- new classification
- chronic treatment
- treatment of acute asthma

Prevalence of Clinical Asthma

BHR – African children

Study	Population	Outcome	Prevalence
Keeley 1991	7-9yr	15% PF	0.1 rural 58
	Zimbabwe	exerc1se	5.8 urban rich/ 3.1 poor
Nganga 1992	9-12 yr	15% FEV1	10.5 urban
	Kenya	exercise	
Addo Yobo	9-16 yr	12.5% PF,	2.7 rural
1997	Ghana	exercise	4.7 urban rich/ 2.2 poor
Nganga 1998	8-12 yr	15% FEV1	3.2 rural peasant/12.9 plant
	Kenya	exercise	10.3 urban rich/ 9.1 poor
Perzanowski	8-12 yr	15% FEV1	9.8 rural plantation
2001	Kenya	exercise	12.4 urban

BHR – South African children

Study	Population	Outcome	Prevalence
Van Niekerk	6-9yr	15% FEV1/ PF	0.14 rural (2
1979	Transkei, CT	exercise	3.17 urban
Vermeulen 1990	8-16 yr	20% FEV1	14.2
	Transkei	histamine	
Terblanche 1990	6-19 yr, CT	10% FEV1, exerc	5.1
Calvert	8-13yr	15% FEV1 or	8.7 rural
2000	Transkei, CT	26% FEF exercise	14.9 urban
Steinman	10-14yr,	20% FEV1	17 rural
2002	Transkei, CT	histamine	34.4 urban

Asthma 12 month prevalence 1995-2002 in South Africa – video questionnaire

Symptom	ISAAC 3 2002	ISAAC 1 1995	р
Wheeze	8.2%	6.4%	< 0.001
Exercise induced wheeze	12.8%	11.5%	0.048
Severe wheeze	6.0%	5.1%	0.032

Zar et al, 2005

Prevalence childhood asthma in Africa

- Increasing in urban and rural populations
 Decline in urban-rural gradient
- Changes in prevalence lifestyle
 - Hygiene hypothesis less infectious diseases Th2 response, increased allergic disease
 - Diet reduced anti-oxidants, increase in obesity
 - Environment house dust mite exposure, smoke exposure, passive smoke, pollution

Diagnosing asthma in children

- Clinical definition
 - recurrent cough / wheeze
 - responsive to bronchodilator
- Other features
 - family history
 - atopy
 - night, exercise-induced symptoms

Predictive index for asthma in children

Major criteria Parent asthma

Eczema

Minor criteria

Allergic rhinitis Wheezing apart from colds Eosinophilis >4%

F,Martinez, USA

Exhaled nitric oxide (FeNO)

NO is produced in epithelial cells of the bronchial wall part of the inflammatory process
 NO production increases with eosinophilic airway inflammation

Exhaled nitric oxide (FeNO)

- measure of airway inflammation
- derived from airway epithelial cells
- relatively easily measured (hand held device) –
 4 years and older
- reproducible, measurement takes secs
 - normal 5-15ppb in children
 - asthmatics 2-4x increase

Predicted FENO (solid blue line) as function of height and 95% prediction intervals (dashed green and red lines). Adapted from Malmberg et al, Exhaled Nitric Oxide in Healthy Nonatopic School-Age Children:Determinants and Height-Adjusted Reference Values; Pediatric Pulmonology 41:635-642 (2006)

Asthma diagnosis

 Exhaled air of asthmatic subjects shows between double and four times the normal NO level

 with symptoms and other techniques such as spirometry, FeNO can be used to help diagnose eosinophilic inflammation in asthma

Factors increasing FeNO

 Airway viral infection (100%) ◆ Allergic rhinitis (50%) Nitrate rich diet (50%) Bronchiectasis Pneumonia Chronic bronchitis Chronic lung disease

Factors decreasing FeNO

Cystic fibrosis (60%)
Ciliary dyskinesia (45%)
Exercise (5-25%)
Bronchoconstriction (25%)
Pulmonary hypertension
Heart failure
HIV

Former classification of asthma

- Intermittent
- Persistent
 - mild
 - moderate
 - severe

CLASSIFY SEVERITY AT PRESENTATION

	Intermittent	Persistent		
	(Mild	Moderate	Severe
Category	1	2	3	4
Daytime symptoms	<u>≼</u> 2 / week	2 - 4 / week	> 4 / week	Continuous
Night-time symptoms	_< 1 / month	2 - 4 / month	> 4 / month	Frequent
PEF (predicted)	<u>≽</u> 80%	<u>></u> 80%	6 0 - 80%	< 60%

Start treatment at any step depending on the level of severity.

 ALL CATEGORIES
 • Short-acting \$\mathbf{B}_2\$ agonist as needed (reliever)

 • Environmental control

 • Education / self management

 STEP 1: Intermittent

 • No daily preventer or controller medication needed.

Asthma control

- Increasing recognition of importance of asthma control in management
- Increasing recognition that control achievable in majority of patients
- Major revision of Global Initiative for Asthma (GINA) guidelines 2006

New Asthma classification

CONTROL key

Classification by level of control

- Controlled
- Partly Controlled
- Uncontrolled

2006 www.ginasthma.org

What is CONTROLLED ASTHMA?

- No (twice or less/ week) daytime symptoms
- No limitations of activity
- No nocturnal symptoms
- No (twice or less/ week) use rescue medication
- Normal or near normal lung function
- No exacerbations

2006 www.ginasthma.org

Levels of Asthma Control

Characteristic	Controlled	Partly controlled (Any present in any week)	Uncontrolled
Daytime symptoms	None (2 or less / week)	More than twice / week	
Limitations of activities	None	Any	3 or more
Nocturnal symptoms / awakening	None	Any	features of partly controlled
Need for rescue / "reliever" treatment	None (2 or less / week)	More than twice / week	in any week
Lung function (PEF or FEV ₁)	Normal	< 80% predicted or personal best (if known) on any day	
Exacerbation	None	One or more / year	1 in any week

2006 www.ginasthma.org

Control graded

- Night symptoms
- Exercise symptoms
- FEV1/ PEF
- Reduction in rescue medication
- Bronchial hyperesponsiveness

How to Assess control?

Composite measures:

- Symptoms constellation
- ♦ PFT, BHR

Measures of airway inflammation

- Sputum eosinophils, cytokines
- BAL, bronchial biopsy
- Blood eosinophils, ECP
- Exhaled breath condensate
- FeNO

Paediatric Asthma control test

- validated questionnaire on asthma control in children
- ♦ 7 questions
 - -4 completed by child, 3 by parent
- In numerical score of 27
 - higher, better control
 - < 19 poor control
- available in SA
 - Eng, Afr, Xhosa, Zulu, Sesotho

Know your asthma score - ACT now

Score: 25 - Congratulations!

You have **TOTAL CONTROL** of your asthma. You have no symptoms and no asthma-related limitations. See your doctor or nurse if this changes.

Score: 20 to 24 - On Target

Your asthma may be **WELL CONTROLLED** but not **TOTALLY CONTROLLED**. Your doctor or nurse may be able to help you aim for **TOTAL CONTROL**.

Score: less than 20 – Off Target

Your asthma may **NOT BE CONTROLLED**. Your doctor or nurse can recommend an asthma action plan to help improve your asthma control.

Know your asthma score – ACT now

Asthma

Control

Test[™]

25

Asthma Control Test™ is a trademark of QualityMetric Incorporated ©2002 [Insert link to local website]

Alternatives

Bronchial alveolar lavage (BAL) eosinophils, inflammatory cytokines
Induced sputum
Urine
Blood: eosinophils, ECP
Breath condensate
Exhaled air - FeNO

Clinical applications of FeNO

confirmation of diagnosis of asthma
response to inhaled steroids
titrating steroids
diagnosing relapse or loss of control
assessing adherence

Figure 5. Different markers of airway inflammation and asthma respond at different rates. FEV₁ = forced expiratory volume in 1 second. Courtesy of Professor de longste.

What's new? - pharmacotherapy

- ICS
- LTRA
- LA β₂ bronchodilators
- Combination therapy

Inhaled corticosteroids in children

- most effective preventative therapy for asthma
- dose-response trials
 - marked, rapid clinical improvement in symptoms at low daily doses
 - similar response except for EIA
- most children well controlled on doses
 - \leq 400ug/day ICS (BDP)
- safe at these doses

Dose-response curves for the therapeutic effect and systemic activity of increasing doses of inhaled corticosteroid.

FeNO and response to ICS

Giving inhaled steroids

- MDI-spacer optimal delivery system ease, cost, efficacy, safety
- Use MDI with spacer
 - Reduced oropharyngeal deposition
 - Reduced side effects
 - Increased delivery medication to lungs

Commercially available spacers

500ml Plastic bottle spacer

Choice of spacer devices:

3 years MDI + spacer with mask 3 years MDI + spacer with mouthpiece or DPI

What's new? - ICS CFC free inhaled corticosteroids

- Switch to HFA preparations
- HFA-BDP vs CFC-BDP
 - smaller particles
 - slower velocity
 - increased lung deposition
 - increased penetration small airways
- same effect at half dose

Long acting β₂ agonists

Leukotriene antagonists

Long acting β_2 agonists, single-dose

- salmeterol, formoterol
- formoterol rapid onset action
- bronchodilation for up to 12 hrs
- protection against EIA up to 12 hrs
- heterogeneity in response drug delivery, disease, β₂ receptors

Safety - LA β_2

- increased asthma deaths in salmeterol multicentre (SMART) study, *Chest 2006* 28 week study salmeterol vs placebo salmet placebo RR

 n=13176
 n=13179

 All 13 (0.1%) 3 (0.02%) 4.37 (1.2-15.3)
- Afr/Amer 7 (0.3%) 1 (0.04%) 7.26 (8-46)

But – pts poorly controlled at baseline, under-use ICS

LA β_2 versus increasing dose ICS

- Adult studies reduced exacerbations, better control, improved PFTs when add-on LA β₂ rather than increasing dose steroid
- Paediatric studies DIFFERENT
 - significant small improvement FEV1, PF
 - impact on asthma control, exacerbation rate variable and inconsistent – *Greenstone et al, Cochrane review 2006*
- ? clinical importance
- individual benefit

Combination therapy

Combination Device	Dose (ug)
salmeterol/ fluticasone (Seretide)	50/100
DPI (Accuhaler)	50/250
	50/500
MDI CFC free	25/50, 25/125, 25/250

formoterol/ budesonide (Symbicort) 4.5/80**DPI** (Turbuhaler) 4.5/160

9/320

Combination therapy

- Little data in children, especially preschool
- Approved for use in children older than 4 years
- Preferable rather than 2 separate inhalers
- LA β_2 should NOT be used as monotherapy

Current recommendation: LA β_2 in childhood asthma

- Add -on therapy if poorly controlled on 400ug/ day inhaled budesonide
- EIB as needed
- Fixed combination products promising for maintenance and relief – only formoterol

Use of leukotriene antagonists

- add-on therapy in mild / moderate asthma with ICS
- children with mild persistent (monotherapy)
- children with viral induced exacerbations
- inability / refusal to take inhaled therapy
- individual variability in response to LTRA

Meyer JACI 2003

Montelukast add-on - 6-14 year olds

Trial	Number patients	Duration of study	Study design	Outcome
Simon J Pediatr, 2001	279 persistent asthma	12 weeks	montelukast 5mg + budesonide 200 ug per day	FEV1 improved (p=0.06) less B2 use fewer exacerbations
Knorr <i>JAMA, 1998</i>	336 with asthma 35% on ICS	8 weeks	montelukast 5mg with/out ICS	improved morning FEV1 less B2 use

LTRA - add-on therapy in children

- improvement in lung function
- decrease in bronchodilator use
- decrease exacerbations

Simons, Allergy, 2000, Knorr et al JAMA 1998

Montelukast monotherapy 2-5 year olds

Trial	No. of patients	Duration	Study design	Outcome
Knorr <i>Pediatr 2001</i>	689 children 2-5 yrs with asthma	12 weeks	Montelukast 4mg vs placebo Primary endpoint - safety	well tolerated, safe improvement in asthma control
Bisgaard H <i>AJRCCM 2003</i>	130 infants 3-36 mnths post RSV bronchiolitis	28 days	Montelukast 5mg vs placebo within 7 days of symptoms	Reduced symptoms
PREVIA Bisgaard H <i>AJRCCM 2005</i>	768 children with intermittent asthma	12 month	montelukast 4/5 mg vs placebo	asthma exacerbations decreased 32% prolonged time to exacerbations

Montelukast monotherapy 6-14 years

Trial	Number patients	Duration study	Study design	Outcome
Knorr JAMA 1998	336 asthmatics (FEV1 50- 85%)	8 weeks	montelukast 5mg vs placebo	improved morning FEV1 less B2 use
<i>Szefler SJ JACI 2005</i>	45 mild persistent asthma	18 week	Fluticasone 100 bd vs montelukast	<pre>improved FEV1 89% fluticasone vs 49% montelukast</pre>
MOSAIC Garcia ERS 2004	996 mild persistent	12 months	montelukast 5mg vs fluticasone 100 bd for rescue free days	comparable rescue free days and no.attacks

LTRA vs ICS as monotherapy

- CLIC study montelukast vs fluticasone (100 bd) in 144 children 6-17yr with mild/ moderate
- crossover design 8 weeks each therapy
- more responded to fluticasone, but some responded to montelukast only

LTRA vs ICS as monotherapy

- 17% responded to both, 23% to fluticasone alone, 5% to montelukast alone, 55% no response as defined by change in FEV1
- Clinical vs PFT response

	FEV1	asthma free days
Both	17%	52%
FP alone	23%	17%
Monteluk alone	5%	4%
Neither	55%	36%

Szefler et al JACI 2005

Difference in FEV1 response between fluticasone and montelukast

Szefler et al JACI 2005

LTRA vs ICS as monotherapy

- response to fluticasone assoc with more airway inflammation – higher FeNO, IgE, BHR, lower FEV1
- response to montelukast associated with young age, short duration symptoms

New paediatric asthma guidelines

- Previous asthma management guidelines for children deficient
- 2007: Expert Panel Report-NHLBI
- 2007: The Practall Guidelines

Expert Panel Report-NHLBI 2007

Table 2c. Stepwise Approach for Managing Asthma in Children Aged 5–11 Years

Expert Panel Report-NHLBI 2007

Table 1c. Stepwise Approach for Managing Asthma in Children Aged ≤4 Years

Algorithm of preventive pharmacologic treatment for asthma in children >2 yrs of age (The Practall Guidelines-2007)

Asthma treatment in children aged 0-2yrs (The Practall Guidelines-2007)

- Consider a diagnosis of asthma if >3 episodes of bronchial obstruction within 6 months
- Intermittent β 2 agonists are first choice
- LTRA daily controller therapy for viral wheezing
- Nebulized or inhaled corticosteroids as daily controller therapy for persistent asthma
- Evidence of atopy/allergy lowers the threshold for use of ICS
- Use oral corticosteroids (e.g. 1-2 mg/kg prednisone)

What's new? - acute asthma

- Inhaled β₂ mainstay
 - MDI-spacer vs nebulised
 - Higher doses MDI-spacer
- Oral corticosteroids
- Inhaled anti-cholinergic reduction in hospitalisation
- Increased dose ICS 4x
- $MgSO_4$ inhaled, iv

Treatment of Asthma Exacerbations Magnesium Sulfate

Controversial:

- Inconsistent data
- Used in very severe asthma in emergency settings:
 - FEV1 < 25% predicted
 - Other signs of severe disease
- Dosage: 1.2 2 gm IV over 10 20 min in 50 ml saline
- Minor side effects

IV Magnesium in acute asthma

- Not to be used routinely
- Selected cases:
 - adults with FEV₁ 25-30%
 - adults and children who fail to respond to initial treatment
 - children: FEV₁ fails to improve above 60% after 1 hr of care ^{1,2} (Evidence B)
- Single 2g infusion/20 mins
- No side-effects reported

Refs: 1. Rowe et al Cochrane database syst rev 2000

2. Fitzgerald West J Med 2000

Conclusions

- diagnosis clinical, but FeNO promising
- inhaled therapy optimal MDI/spacer
- ICS most effective, safe controller therapy
- add-on therapy– LTRA, LABA (combination products preferable)
- MgSO₄ for treatment of acute severe asthma?

