IDIOPATHIC STEROID RESISTANT NEPHROTIC SYNDROME IN CHILDREN

R BHIMMA

DEPARTMENT OF PAEDIATRICS AND CHILD HEALTH

CASE DEFINITION OF NS IN CHILDREN

Heavy proteinuria:

- . 3+/4+ on urinary dipsticks analysis
- urine albumin excretion (>40mg/m² per hour or 50mg/kg per day)
- _ random spot urine protein: creatinine ratio >2 [mg/mg]
- Hypoalbuminaemia serum albumin <2.5mg/dL)</p>
- Hyperlipidaemia (serum cholesterol >200mg/dl or 6.5mmol/L)

Supportive criteria

↑α2 globulin

± Oedema

Introduction

- 80% of children are steroid sensitive (SS).
- 50-60% of SS group have frequent relapses or develop steroid dependency.
- Common histological types: MCD, Mes Prolif, FSGS.

EPIDEMIOLOGY

- Incidence varies with race, age and geography.
- Annual incidence <u>+</u>2 2.7 per 100 000 in USA.
- Cumulative prevalence of 16 per 100 000.
- Six folder greater in Asian than European children.
- Peak age of onset of idiopathic NS 1 6 years.

NS IN AFRICA

1970s → Racial differences

Whites Indians

—

Pattern of disease similar to industrialised countries

Blacks

Distinct differences

DISTINCTIVE FEATURES OF NS IN BLACK SA CHILDREN

- Paucity of MCD.
- Majority are steroid resistant.
- Often find an identifiable cause (e.g. HIV, HBV, Syphilis, Strep.)
- Malaria and schistosomal nephropathy rare.
- Congenital syphilis and CMV important in newborns.
- HIV nephropathy seen from 2001 but now on the decline.

CASE DEFINITION OF SRNS

ISKDC (International Study of Kidney Disease in Children)

Failure to achieve remission following 8 weeks of the standard oral prednisone regime (ISKDC - 60mg/m² daily for 4 weeks followed by 40mg/m² on alternate days for 4 weeks).

ISKDC (1981) Kidney Int 20(6):765-771

OTHER REPORTED DEFINITIONS

Above followed by three to five doses of intravenous methylprednisolone.

PREDICTORS OF STEROID RESISTANCE

Clinical

Hypertension (50 – 60% likehood)

Haematuria (30%)

Hypertension + Haematuria (20%)

Age of presentation (<1yr or > 8yrs)

Black race

Laboratory

Elevated plasma creatinine

Massive proteinuria (> 10g/day)

Selectivity index >0.2

* Tubular proteinuria (increased excretion of β_2 microglobulin, retinolbinding protein, lysozyme).

Histology

Tubulointerstitial disease on renal biopsy or collapsing FSGS and percentage sclerosed glomeruli >50% carry a worse prognosis.

CHARACTERISTICS OF SRNS

- Clinically and genetically a heterogenous disease.
- Many cases are also resistant to additional immunosuppressive agents.
- Carries the highest risk for extra-renal complications.
- Progression to ESRD in 50% of children if untreated.
- **± 25-40% of FSGS with SRNS develop recurrence of primary disease if transplanted.**
- Approximately 75% of patients exhibit renal histological features of FSGS however 20% demonstrate minimal change disease.
- Family cases of SRNS described suggest the presence of monogenic variants.

Pediatr Nephrol 2004; 28: 557-573

J Am Soc Nephrol 2004; 15: 722-732

PATHOGENESIS OF GLOMERULOSCLEROSIS IN SRNS

Haemodynamic Factors

Mesangial
Matrix
Production by
Resident Cells

Hyperlipidaemia

Cytokines and Growth Factors

Platelet Activation and Coagulation Factors

Kidney Int 1995; 47: 559-561

PATHOGENESIS OF FSGScont.

- Circulatory permeability factor implicated in the pathogenesis of primary FSGS.
- Soluble urokinase-type plasminogen activator receptor (su*PAR*) is implicated as a biomarker and possible contributing factor in the development of FSGS.

Evidence for 'circulating' component of permeability factor in FSGS.

- FSGS can occur very rapidly after kidney Tx (30% of cases in adults, >50% in children).
- Recurrence of FSGS can be prevented or delayed in high-risk patients with pre-Tx plasmapheresis.
- Injection of plasma or plasma fractions from patients with FSGS in rats causes proteinuria.
- Sera from patients with FSGS increases albumin permeability in an isolated glomerulus model ex vivo.
- A transient FSGS has been transmitted to a newborn from a mother with FSGS.

McCathy EJ, et. al, Clin J am soc. Nephrol 2010;5:2115

WHAT ARE THE GENETIC MECHANISMS LEADING TO STEROID RESISTANCE?

- Precise mechanism remains elusive.
- Specific genetic mutations:

	NPHS1	-	Nephrin
	NPHS2	_	Podocin
	ACTN4	-	Alpha-Actinin-4
	CD2AP	_	CD2 associated protein
*	WT1	-	Transcription factor (Denys-Drash and Frasier syndrome)
*	TRPC6	-	Canonical Transient Receptor Potential Cation 6
*	INF2	-	Formin Family of actin regulating proteins
*	MYH9/APOL1	-	Chromosome 22 – variants associated with FSGS and HIV nephropathy in African-Americans

All proteins are integral components of the GBM.

Pediatr Nephrol 1999; 19: 1313-1318

Nat Genet 2008; 40: 1185

- The NPHS2 gene has been mapped on chromosome 1 at position 1q25-q31.
- Encodes for a 383 amino acid protein called podocin, which is expressed in podocytes.
- Podocin is an integral membrane protein located at the slit diaphragm of the glomerular permeability barrier.
- This gene is mutated in patient with SRNS and more specifically in patients presenting with FSGS.

NPHS2 MUTATIONS IN SRNS

- Reported in the following group of idiopathic SRNS:
 - Autosomal recessive inheritance in FSGS
 - Congenital or infantile NS
 - Adolescents and adults with familial FSGS
 - Sporadic SRNS
- Encodes a 383-amino acid protein called podocin.
- This is a lipid raft-associated protein exclusively expressed in the podocytes at the foot processes.
- Ruf et al reported that none of the children mutations in sporadic SRNS with NPSH2 mutations responded to cyclosporine or cyclophosphamide treatment.
- Higher rate of recurrence of proteinuria in patients with SR FSGS and a single heterozygous NPHS2 mutations.
- Therefore testing for this mutation is important in living donor transplantation when the donor is carrying a heterozygous NPHS2 mutation. The kidney may be at increased risk for late onset FSGS and the donor with one kidney may be at risk of developing FSGS.

Genetic mutations of NPHS2 gene in SRNS

Israeli-Arab
Chinese study
Turkish
Japanese

_ 55% showed NPHS2 mutations

_ 4% and 15.9%

13.3% and 27.4%

1 of 13 with congenital NS displayed NPHS2 mutation

Korean
Japanese
Israeli-Jewish
African American

no NPHS2 mutations found

no disease causing mutations in NPHS2 and WT1 genes

Berdeli A et al. Pediatr Nephrol 2007; 22(12): 2031-40. Chernin G et al. Pediatric Nephrol 2008; 23(9): 1455-60.

Limitations of Genetic Testing Using NPHS2

- 80% children SSNS.
- Only 20% have SRNS due to NPHS2 mutations.
- Gene locus will identify only 5% of cases
- There are other yet to be identified genes responsible for

higher proportion of cases of SRNS.

COMPLICATIONS

- Renal impairment
- Anasarca
- Infections (includes primary peritonitis)
- Malnutrition and growth retardation
- Hypertension
- Thrombotic complications (e.g. renal vein thrombosis)
- Hypovolaemic shock
- Accelerated arteriosclerosis
- Secondary immunodeficiency
- Side effects of drug therapy

TREATMENT OF SRNS

SYMPTOMATIC TREATMENT

Diet - salt restriction (no added salt)

reduction of saturated fat intake (<30% of total calorie intake)

- complex carbohydrates

- protein intake 130 – 140% (2 – 2.5g/kg) of the normal daily allowance according to statural age.

Hypovolaemia - albumin or plasma infusions

Control of oedema - diuretics with albumin infusions.

Prevention of thromboemboli - warfarin

- aspirin

- heparin

Hypertension - anti hypertensive drugs

Infections and immunisation - antimicrobials and vaccines

IMMUNOSUPRESSIVE THERAPY

Second line agents

Alkylating agents
Cyclophosphamide
Chlorambucil
Levamisole

Intensive therapy

Cyclosporine
Pulses dose Methylprednisolone
Pulse dose cyclophosphamide

New agents

Tacrolimus (Prograf®)
MMF (Cellcept®)
Monoclonal antibodies (e.g. rituximab, ocrelizumab, ofatumumab)

Cyclosporine

- Remission rates range from 20-38% (CR 31% and PR 38% during 6 mths Rx).
- Relapses follow tapering of treatment or when treatment discontinued (±70%).
- Prolonged use associated with chronic nephrotoxicity (tubulointerstitial lesions with striped interstitial fibrosis and groups of atropic tubules)
- Other adverse effects:
 - hyperkalaemia, HPT, hypertrichosis, gum hypertrophy, hypermagnesaemia, bone marrow suppression, nausea and vomiting.

Garin EH et al. Am J Dis Child (1988);142:985
Ponticelli et al. Kidney Int (1993);43:1377

EFFECT OF COMBINATION WITH STEROIDS ON REMISSION RATE IN PATIENTS WITH STEROID-RESISTANT NEPHROTIC SYNDROME

	Complete remission		Failure
CsA monotherapy (n=123)	14%	12%	74%
CsA + Steroids (n=103	24%	24%	52%

mpact of the National Institute of Health Focal Segmental Glomerulosclerosis (NIH FSGS) clinical trial on the treatment of steroid-resistant FSGS

Aim

To compare cyclosporine (CSA) with combined mycophenolate mofetil (MMF) and oral pulsed dexamethasone (DEX).

Study Design

- Multicentre, open-labelled, randomised study in the USA.
- All enrolled patients were treated with low-dose prednisone (0.3mg/kg on alternate days) x 6 months.
- All were treated with lisinopril (or, if intolerant losartan) at the maximally tolerated dose.
- CSA dosage was adjusted to target a 12-h trough level of 100 –
 250mg/mL.
- MMF was dosed at 25-36mg/kg/day up to 2g/day, in 2 divided doses.
- DEX pulses were given weekly for the first 8 weeks, then biweekly until week 26, then every 4 weeks through week 50.
- N = 138 of an original 500.

Inclusion criteria

- Patients with biopsy-proven FSGS.
- Age 2–40 years.
- eGFR >40mL/min/1.73m².
- Urinary protein to creatinine ratio (Up/c) >1g/g, sustained over two visits.
- Steroid resistance (Up/c > 1g/g despite a minimum of 4 weeks of high dose steroids).

Exclusion criteria

- Steroid sensitive or dependant patients.
- Obese patients to limit the presence of obesity-associated FSGS.
- Secondary causes of FSGS.

Summary of results

■ While no differences were statistically significant, point estimates for each

level of the primary outcome favoured CSA.

- Proteinuria decreased in both groups, but to a greater extent in the CSA group.
- CSA group experienced a greater decline in eGFR at week 26.
- Adverse event rates were similar in the two groups.

Discussion

- Largest randomised trial ever carried out for SR-FSGS.
- Among the largest trial for any glomerular disease outside of diabetic nephropathy or lupus nephritis.
- Strong representation from racial and ethnic minorities.
- Large paediatric FSGS population with two-thirds of patients <18 years of age.
- The strength of the study was the centralised biopsy review.

- Response to treatment was moderate.
 - ~40% in both groups achieved complete or partial remission after 1 year.
 - only 60% of these (24% of the total) were still in remission 6 months later.
- This highlights the morbidity and treatment resistance of FSGS.
- Study was largely underpowered, raising the possibility of a substantial type II (beta) error.
- Special consideration should be given to MMF—DEX in patients with baseline-impaired GFR or in those who become dependent on immunosuppression to maintain remission.

TACROLIMUS

- Macrolide antibiotic isolated from fungus Streptomycin tsukubgensis.
- Selective inhibitory action on CD4 T-helper lymphocytes.
- More potent agent in cytokine suppression compared to cyclosporine.
- Also has a variety of effects on cellular functions, and intracellular signaling events not seen with cyclosporine.
- Precise mechanism of action in decreasing proteinuria needs to be defined – possibly due to increased expression of synaptopodin, which in turn stabilises the contractile apparatus of podocyte foot processes.

MYCOPHENOLATE MOFETIL

- Highly selective, non competitive inhibitor of inosine monophosphate dehyrdrogenase, the rate limiting enzyme in de novo biosynthesis of guanosine nucleotides.
- Prodrug of MPA.
- Strongly inhibits both T- and B-lymphocyte proliferation.
- Used treatment of allograft rejection, SLE, vasculitis, IgA nephropathy, MN.

USE OF MMF IN PAEDIATRIC NS

- Best responses obtained in children with SDNS.
- Success rate in treating SRNS less gratifying.
- Paediatric dosage not yet established.
- Suggested dose 15 25 mg/kg p.o bid.

Ped Nephrol (2007); 22: 2059-2065

Randomized controlled trials in steroid-resistant nephrotic syndrome

Author		No.	Intervention	Control Dura (months)	ation	Remission complete or partial	RR for remission	Conclusion
Lieberman 1996	and Tejani	24	Cyclosporine	Placebo	6	12 (100 %) vs. 2 (17 %)	5.00 (1.63– 15.31)	Remission cyclosporine > placebo
								piaceso
Ponticelli (et al. 1993	17ª	Cyclosporine	Supportive 1 therapy	.2 ^b	6 (60 %) vs. 0 (0 %)	9.45 (0.62– 144.74)	Remission cyclosporine > control
Garin et al	. 1988	8	Cyclosporine	None		2 0 (0 %) vs. 0 (0 %)	0 (0.0–0.0)	No sig. Difference
Choudhry	et al. 2009	41	Tacrolimus + prednisone	Cyclosporine + prednisone ^c	2	12 18 (86 %) vs. 15(75 %)	1.14 (0.84– 1.55)	No significant difference
Gipson et	al. 2011	138	Cyclosporine	MMF ^d + dexamethasone	12	33 (45.8 %) vs. 22(33 %)	1.35 (0.90– 2.10)	No significant Difference
ISKDC 197	4	31	CPA + prednisone	Prednisone	12	3 10 (56 %) vs 16(46 %)	1.20 (0.59–) 2.47	No significant difference
Tarshish et	al. 1996	53	CPA + prednisone	Prednisone	СРА 3	16 (50%) vs Prednisone 12	0.88 (0.53– 1.45)	No significant difference

RR risk ratio for remission; a Children; b 6 months full dose followed by taper 25 % every 2 months; c prednisone given on alternate days;

d mycophenolate mofetil; e cyclophosphamide

KDIGO Clinical Practice Guidelines for GN Kidney Int 2012; (2): 139

MANAGEMENT OF CHILDREN WITH SRNS WHO RELAPSE

Relapse after complete remission

Restart oral corticosteroids

Return to previous successful immunosuppressive therapy

Start alternative agent to minimize potential cumulative toxicity

RECOMMENDATIONS OF THE KDIGO GLOMERULONEPHRITIS WORKGROUP, 2012

- * Recommend using a CNI as initial therapy for children with SRNS.
- CNI therapy be continued for a minimum of 6 months and then stopped if a partial or complete remission of proteinuria not achieved.
- If achieved continue for 12 months.
- Low-dose corticosteroid therapy be combined with CNI therapy.
- For failed CNI therapy consider MMF, high dose corticosteroids or a combination of these agents.
- Cyclophosphamide should not be used unless no other Rx works.
- ACEi or ARBs should be used in all children with SRNS.
- NB. Guideline does not include routine evaluation for genetic mutations.
 - Optimal drug levels for SRNS are not yet established.
 - Based on case series, complete or partial remissions less common in the presence of NS associated with podocin mutations.

MANAGEMENT OF SRNS IN DEVELOPING COUNTRIES

- Major consideration cost.
- Compliance.
- Many still use pulse methlyprednisolone in combination with oral cyclophosphamide and low dose oral steroids.
- IV cyclophosphamide with MP and oral steroids used in some centres.

RITUXIMAB

- Rituximab is a chimeric anti-CD20 (anti B-cell) monoclonal antibody.
- This antibody efficiently eliminates B cells, as the CD20 antigen is expressed early in B-cell ontogeny but is absent in mature plasma cells.
- Has been reported to be beneficial in patients with SRNS in a limited number of small case series.

Nakayama M et al Pediatr Nephrol 2008; 23: 481 Bagga A et al N Engl J Med 2007; 356: 2751

OTHER AGENTS

- Vincristine
- Azathioprine
- Sirolimus
- Mizoribine
- Immunoglobulin infusions

ADJUCTIVE THERAPY

- ACEI and ARBs
- Lipid lowering agents (statins)
- Vitamin and mineral supplementation
- Anti-thrombotic agents
- CKD (stage III IV) ESRD therapy including RRT

#