An Approach to bleeding

Johnny Mahlangu

Haemophilia Comprehensive Care Centre Charlotte Maxeke Johannesburg Hospital and Department of Molecular Medicine and Haematology NHLS and University of the Witwatersrand, Johannesburg

Death in the Emergency

Hoyt et al. J Trauma 1994;37:426.

First 24 hr bleeding is an Independent Predictor

- Mortality
- ICU Admission
- ICU LOSS

(After Controlling for ISS;GCS; Age; Gender; Anemia ;Shock ,Lactate; Base Deficit; Shock Index HR/SBP>0.6)

Malone L et al. J Trauma 2003;54:898-907

ICU mortality

Cook etal Critical care 2001; 5(6):368-375

Which bleeding disorders?

Bleeding frequency and bleeding recurrence is more common in inherited bleeding disorders than acquired bleeding disorders

In this talk....

- Mechanism of haemostasis
- Aetiology of inherited bleeding
- Evaluation of inherited bleeding
- Principles of management of bleeding

Pathophysiology of bleeding

Any bleeding is a direct consequence of one or more of these three factors

Haemostatic balance

Outline

- Mechanism of haemostasis
- Actiology of bleeding
- Evaluation of bleeding
- Management of bleeding patient

Blood vessel abnormalities

Altered vessel wall

- Kasabach Merrit
- Hereditary
 haemmorhagic
 telangiectasia

Connective tissue

- Marfan syndrome
- Ehlers Danlos
- Pseudoxanthoma
 - Scleroderma

Congenital blood vessel abnormalities are very rare

Inherited platelet disorders

- Adhesion
- Aggregation
- Signal transduction
- Granular secretion
- Cytoskeletal changes

Inherited platelet disorders

Adhesion	Bernard Soulier	
Aggregation	Glanzman's thrombasthenia	
Signal transduction	TS deficiency, cyclooxygenase	
Granules	Hemansky pudlac; GPS	
Cytoskeletal	Wiskott Aldrich	
Primary secretion	• TVA2, ADP, Epinephrine	
Production	• MYH9; TWAR	

Congenital Plasma proteins

Plasma protein	Inheritance	Prevalence
Factor I	AR/AD	Rare
Factor II	AD	Rare (extremely)
Factor V	AR	1 /1000 000 births
Factor FVII	AR	1/500 000 births
Factor FVIII	X linked	1/10 000 male births
Factor IX	X linked	1/60 000 male births
Factor X	AR	1/500 000 births
Factor XI	AD	4% AJ, rare otherwise
Factor XIII	AR/AD	Rare
vWF	AR/AD	1/100

Congenital Plasma proteins

Outline

- Pathophysiology of haemostasis
- Aetiology of bleeding
- Evaluation of bleeding
- Management of bleeding

- History
- Physical examination
- Screening tests
- Confirmatory tests

History

Main differential diagnosis

Congenital or acquired

History

- Type of bleed
- Extent of bleed
- Site
- Amount
- Spontaneous or induced
- Immediate or delayed

Skin bleed

Joint bleed

Mucous membrane bleed

Traumatic bleed

Examination

- Pallor , jaundice
- Petechaie, purpura, ecchymoses,
- Haemarthrosis, haematomas
- Melaena, haematochezia
- Neuropathy, blindness, respiratory compromise

Who to test?

- Definite family history
- Spontaneous bleeding
- Induced uncontrolled bleeding
- Life threatening bleed
- Minor recurrent bleed
- Prior to major surgery
- Prior to biopsy or invasive procedure

Von Willebrand Disease

Von Willebrand disease(vWD)

Definition

- Commonest inherited heterogeneous group of bleeding disorders
- Due to mutation in vWF gene
- Resulting in qualitative and/or quantitative deficiency of Von Willebrand factor
- May or may not present with bleeding

vWD - Prevalence

Estimated frequency

- 1 in 100
- No race, sex or age predilection

Accurate prevalence estimation precluded

- Variable expressivity
- Reduced penetrance
- New mutations

vWD - Aetiology

Partial or Complete Structure Function

vWD - Classification

	Abnormality	vWD Type
Quantitative	Partial absence	1
	Total absence	3
Structure	Abn assembly/secretion	2A1
	Multimer proteolysis	2A2
Function	tbinding to platelets	2B
	↓binding to platelets	2M
	↓binding to FVIII	2N

vWD – frequency

	Frequency	Inheritance mode
Type 1	70-80%	AD
Type 2	20-30%	AD/AR
Type 3	<5%	AR

vWD- clinical features

Mucocutaneous bleeding

Symptom	Frequency(%)
Epistaxis	60
Dental surgery	50
Easy bruising	40
Menorrhagia	35
Gum bleeding	35
Post[artum	25
Postoperative	20
GIT bleeding	10

Diagnostic Testing

Tests to establish the diagnosis 1-vWF antigen 2- vWF:R:Co 3- Factor VIII 4-PTT 5-Bleeding time Tests to subtype vWD 1- RIPA 2-Multimer analysis 3-vWF- Factor VIII binding (Type 2N)

Diagnostic Typing

	Type 1	Type 2	Туре 3
vWF-Ag	40-60	N	0
vWF-Activity	decreased	N	decreased
Factor VIII	40-60	N	2-3%
PTT	Normal	N	Prolonged
Bleeding time	Prolonged	N	Prolonged

Diagnostic subtyping

	HMW MULTIMER	RIPA	FVIII
2A	Absent	Decreased	Normal
2B	Normal	Increased	Normal
2M	Normal	Decreased	Normal
2N	Normal	Normal	Reduced

Treatment of vWD

Non replacement therapy

- DDAVP
- Antifibrinolytic therapy
- Oestrogen therapy

Replacement therapy

- vWF plasma concentrate
- Cryoprecipitate
- Recombinant vWF

The Haemophilias

Classification

Factor level

- Factor <1%</p>
- Factor 2-5%
- Factor >5-50%
- Factor >50%

- -Severe
- -Moderate
- -Mild
- -Normal

Note

Biochemical-clinical phenotypic discrepancy

Clinical features

Haemmorrhagic manifestation

Severe

- -Bleed spontaneously
- Moderate
- -Bleed with minor trauma
- Mild -Bleed with surgery or trauma

Sites of bleeding

- Joints knees > ankles > elbows >shoulder > wrist > hips
- Muscles Psoas muscle, quadratus,
- Mucous membranes- oral, nasal, GIT, GUT
- Organ systems GUT, GIT, CNS,

Laboratory Diagnosis

Screening tests

- INR
- PTT
- Platelet count
- Hess test /bleeding time

Confirmatory tests

- Correction studies
- Factor assay
- Inhibitor assay
- Genetic family studies

Differential diagnosis

	Coagulation defect	Plt/ capillary defect
Bleeding onset	Spontaneous	Induced
Site of bleeding	Joints/muscles	Skin/ mucous
Type of bleeding	Haemarthrosis/ haematoma	Petechiae/echymo ses/ purpura
Time to onset	Delayed	Immediate
INR/PTT	Prolonged	Normal
Bleeding time	Normal	Prolonged
Platelet count/fx	Normal	Abnormal

Principles of Management

- Treat bleeds with specific product
- Treat bleeds early
- If in doubt, treat
- Treat veins with care
- Avoid product causing platelet dysfunction
- Avoid intramuscular injections
- Do not aspirate joints before treatment
- Apply local measures
- Multidisciplinary approach

Advances in management of bleeding disorders

Standard of care is replacement of missing clotting factor

Standard of care in haemophilia is replacement of missing clotting factor

Remarkable progress in haemophilia bleed management therapies

CFC replacement approaches

CFC- Clotting factor concentrate; AT3- antithrombin 3; TFPI-tissue factor pathway inhibitor; RNAi – interfering ribonucleic acid

CFC replacement technologies

Fusion technology	 1.FC fusion 2. Albumin fusion 3. CTP fusion 4 PSA fusion 	FVIII-FC FIX-FC FVIII-FP FIX-FP FVII-FP FVII-CTP Bax-826	Mahlangu etal 2014 Powell etal 2013 FVIII-FP Santogostino 2016 Ongoing Ongoing Ongoing
PEGylation technology	 Site directed Random GlycoPEGylation 	Bay-94 9027 Bax-855 N8-GP N9-GP	Shah etal 2016 Konkle etal 2015 Giangrande 2016 Young etal 2016
Sequence modification	1. Heavy+light chain fusion	SingleChain FVIII	Mahlangu 2016

Non-replacement therapies in haemophilia

Non CFC replacement therapies

Anti-TFPI

• AT3 RNAi

• Anti IXa/X

Gene therapy

Non-replacement therapies in haemophilia

Non CFC replacement therapies

Anti-TFPI

AT3 RNAi

Anti IXa/X

Gene therapy

Rationale for anti-TFPI use in haemophilia

Broze GJ, Jr., Girad TJ. Front Biosci (Landmark Ed) 2012; 17: 262-80.

Rationale for anti-TFPI use in haemophilia

Broze GJ, Jr., Girad TJ. Front Biosci (Landmark Ed) 2012; 17: 262-80.]

Anti-TFPI Clinical studies

PEG-Aptamer

- Bax 499
- Phase I/II
- Increased TFPI level and decreased thrombin
- Stopped due to excessive bleeding

Phase 1 anti-TFPI study

Journal of Thrombosis and Haemostasis, 13: 743-754

DOI: 10.1111/jth.12864

ORIGINAL ARTICLE

Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: a randomized first human dose trial

P. CHOWDARY,* S. LETHAGEN,†‡ U. FRIEDRICH,† B. BRAND,§ C. HAY,¶ F. ABDUL KARIM,** R. KLAMROTH,†† P. KNOEBL,‡‡ M. LAFFAN,§§ J. MAHLANGU,¶¶ W. MIESBACH,*** J. DALSGAARD NIELSEN,††† M. MARTÍN-SALCES‡‡‡ AND P. ANGCHAISUKSIRI§§§

*Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free Hospital, London, UK; †Novo Nordisk A/S, Søborg, Denmark; ‡Copenhagen University, Copenhagen, Denmark; §Division of Hematology, University Hospital, Zurich, Switzerland; ¶University Department of Haematology, Manchester Royal Infirmary, Manchester, UK; **Haemophilia Centre, National Blood Centre, Kuala Lumpur, Malaysia; ††Department of Internal Medicine—Angiology, Haemostasis and Coagulation disorders, Vivantes Hospital im Friedrichshain, Berlin, Germany; ‡‡Division of Haematology and Haemostasis, Department of Medicine 1, Medical University of Vienna, Vienna, Austria; §§Imperial College London, Hammersmith Hospital, London, UK; ¶¶Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand and NHLS, Johannesburg, South Africa; ***Zentrum für Innere Medizin, Med. Klinik III, Hämophilie-Zentrum, Frankfurt/M, Germany; †††Thrombosis and Haemostasis Unit, Department of Haematology, Rigshospitalet, Copenhagen, Denmark; ‡‡‡Haematology Department, Hospital Universitario La Paz, Madrid, Spain; and §§®Division of Hematology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand

Pharmacokinetics sc vs iv

Chowdary et al J Thromb Haemost 2015; 13: 743–54.

Non-linear pharmacokinetics

Chowdary et al J Thromb Haemost 2015; 13: 743–54.

Safety profile

- No SAE
- No thrombosis or vascular events
- No allergy
- No anti-concizumab antibodies
- No inhibitors
- No clinically relevant changes in
 - TT, aPTT, fibrinogen, antithrombin
- Dose dependent changes in
 - Ddimers
 - Prothtombin fragment 1+2

Non-replacement therapies in haemophilia

Non CFC replacement therapies

• AT3 RNAi

Anti IXa/X

Gene therapy

Haemostasis in normal and PWH

Sehgal et al Nature med 2015; 21(5) :492-497

AT role

Sehgal et al Nature med 2015; 21(5) :492-497

AT3 RNAi Mechanism of action

Ragni M NEJM 2015; 373(4): 389-390

Phase 1 Results: Dose dependent response

Mean maximal AT lowering of $87 \pm 1\%$ at 80 mg fixed dose

Sehgal et al Nature med 2015; 21(5) :492-497

AT after monthly dosing of ALN

Pasi etal WFH congress 2016, Orlando

Summary of Median ABR (All Cohorts, n=17)

Pasi etal WFH congress 2016, Orlando

Safety profile based on current data

- Fitusiran generally well tolerated in hemophilia A and B patients with and without inhibitor
- No SAEs related to study drug;
- No thromboembolic events
- 11 (35%) patients reported mild drug-related ISRs
 - Mostly pain and/or erythema at the injection site
- AEs (excluding injection site reactions(ISRs)) in ≥10% of patients:
 - upper respiratory tract infection (10%) and arthralgia (10%);
 - majority mild or moderate in severity
 - 1 discontinuation due to AE; event resolved in this patient with symptomatic management

Summary on ALN-RNAi

- Dose-dependent AT lowering and thrombin generation increase achieved, with once-monthly subcutaneous
- dose regimen; fixed 80 mg dose provides consistent AT lowering >75%
- Evidence of clinical activity and potential correction of hemophilia phenotype in non-inhibitor patients
- In exploratory post-hoc analysis in monthly dose cohorts, fitusiran achieved median ABR = 0, with
 - 53% patients bleed-free and
 - 82% patients experiencing zero spontaneous bleeds

Non-replacement therapies in haemophilia

Non CFC replacement therapies

AT3 RNAi

• Anti IXa/X

Gene therapy

ACE910 Bispecific antibody

Kitazawa etal Nature Med 2012 ; 18(10): 1570-1574

Plasma ACE910 concentration

Impact on aPTT and thrombin generation

Summary on Emicizumab

- Emicizumab was associated with neither serious adverse events nor clinically relevant coagulation abnormalities.
- Plasma concentrations of emicizumab increased in a dosedependent manner.
- Activated partial-thromboplastin times remained short throughout the study.
- The median annualized bleeding rates in cohorts 1, 2, and 3 decreased from 32.5 to 4.4, 18.3 to 0.0, and 15.2 to 0.0, respectively.
 - There was no bleeding in 8 of 11 patients with factor VIII inhibitors (73%) and in 5 of 7 patients without factor VIII inhibitors (71%). Episodic use of clotting factors to control bleeding was reduced. Antibodies to emicizumab did not develop

Scepticism about gene therapy

nature

Vol 461 | Issue no. 7268 | 29 October 2009

www.nature.com/nature

Gene therapy deserves a fresh chance

Initial interest in gene therapy waned after the technology failed to live up to expectation. Progress made since has received little attention, but suggests that the pervading sense of disillusionment is misplaced.

First successful FIX gene therapy in man

- Phase 1
- 6 patients, 2 in each of 3 dose escalations
- Durable FIX levels 1–6%
- 2/6 transient ALT elevation

Nathwani, et al. NEJM 2011;365;2357

Haemophilia B longer term follow up data

- Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B.
- Long-term follow up of original 6 patients
 - Each of 3 dose escalations
- Plus 4 additional subjects
 - at high dose: 2 x 10^12 vector genomes/kg
- Long term FIX levels 1–6% median 3.2 years follow up

FVIII gene therapy?

- Bigger protein than FIX- Packaging more complex
- Platelet directed FVIII gene therapy
 - Animal model, lentiviral
- Hybrid porcine / human sequence
 - Lentiviral

Du, et al. *Nature Comm* 2013;4:2773

Johnston, et al. Gene Ther 2013;20(6):607-615

FVIII Clinical trials

BMN 270: AAV 5-factor VIII vector

- Trial due to start Q2/3 2015
- First in man phase 1 FVIII trials
- UCL/St Jude (Nathwani/Davidoff)
 - Imminent

Summary

- Significant progress has been made in the development of therapies for haemophilia
- Extended half life products promise to make prophylaxis a reality
- Evolving alternative therapies are beginning to emerge
- All therapies have limitations in that they may not apply to all patients with haemophilia
- Gene therapy remains the choice option for cure of haemophilia

